
При малых деформациях () сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:
. |
Это соотношение выражает экспериментально установленный закон Гука . Коэффициент называется жесткостью тела . В системе СИ жесткость измеряется в ньютонах на метр (). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение называется относительной деформацией , а отношение , где – площадь поперечного сечения деформированного тела, называется напряжением . Тогда закон Гука можно сформулировать так: относительная деформация пропорциональна напряжению :
![]() |
Коэффициент в этой формуле называется модулем Юнга . Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, , а для резины , т. е. на пять порядков меньше.
Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).
![]() |
Рисунок 1.12.2. |
Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести:
Сила
с которой тело действует на стол, называется весом тела.
В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.
![]() |
Рисунок 1.12.3. |
В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация не должна превышать . При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.
Каждый из нас знает, что такое пружина . И мы знаем, что пружину можно удлинять или же, наоборот, укорачивать, если приложить к ней силу.
Поскольку для того, чтобы удлинить или укоротить пружину, требуется усилие, логично предположить, что пружина оказывает “сопротивление” при ее деформации (растяжении или же сжатии) — в ней возникает сила. Это сила упругости F у п р у г о с т и F_ <упругости>F у п р у г о с т и .упругости>
Можно заметить, что чем больше мы пытаемся удлинить пружину (или чем больше укоротить ее), тем бОльшую силу приходится прикладывать к пружине. Тем большая сила упругости возникает в пружине.
Но пружины бывают разные. Некоторые легко поддаются деформации усилием человека. Некоторые — сложно. Так, например, не составляет труда сжать пружину детского пистолета на несколько сантиметров. Пружину же в амортизаторе машины сжать на те же несколько сантиметров намного сложнее. Должна существовать какая-то величина, которая отражала бы то, что пружины бывают разные. И такая величина есть: это k k k — коэффициент упругости (коэффициент жесткости, жесткость). Чем сложнее сжать пружину, тем больше k k k . То есть более жесткая пружина имеет бОльшую по величине жесткость k k k . Чем больше k k k — тем больше сила упругости, которая возникает в пружине.
Наши рассуждения о влиянии удлинения (укорочения) и жесткости пружины на силу упругости закреплены в законе Гука:
Однако закон Гука выполняется не всегда. Закон Гука справедлив только для пластичных деформаций. Это такие деформации, при которых тело полностью восстанавливает свою форму и размеры после исчезновения сил, деформирующих тело. Короче говоря, закон Гука будет выполняться и деформации будут пластичными в том случае, когда растянутая или сжатая пружинка вернет себе форму после того, как ее перестанут растягивать или сжимать. Если пружину растянуть слишком сильно, то она может так и остаться растянутой. Деформации, которым она подверглась, были непластичными, и закон Гука выполнялся не везде.
Задачи для самостоятельного решения: #сила упругости
“>