Электрошлаковая сварка сущность процесса и область применения

Схема процесса электрошлаковой сварки

Этот способ широко используют в промышленности для соединения металлов повышенной толщины: стали и чугуна различного состава, меди, алюминия, титана и их сплавов. К преимуществам способа относится возможность сварки за один проход металла практически любой толщины, что не требует удаления шлака и соответствующей настройки сварочной установки перед сваркой последующего прохода, как при других способах сварки. При этом сварку выполняют без снятия фасок на кромках. Для сварки можно использовать один или несколько проволочных электродов или электродов другого увеличенного сечения. В результате этого достигается высокая производительность и экономичность процесса, повышающиеся с ростом толщины свариваемого металла.

К недостаткам способа следует отнести то, что электрошла- ковая сварка технически возможна при толщине металла более 16 мм и за редкими исключениями экономически выгодна при сварке металла толщиной более 40 мм. Способ позволяет сваривать только вертикальные швы-При сварке некоторых металлов образование в металле шва и околошовной зоны неблагоприятных структур требует последующей термообработки для получения необходимых свойств сварного соединения.

Расплавленные электрической дугой флюсы образуют шлаки, которые являются проводниками электрического тока. Шлаковая ванна — это инерционное нелинейное активное электрическое сопротивление. Если конец электрода окунуть в шлаковую ванну, через шлак пойдет ток и будет выделяться теплота, которая будет нагревать свариваемые кромки. На этом основана элек- трошлаковая сварка (рис. 6.1). Электрод и основной металл связаны электрически через шлаковую ванну. Выделяющаяся в шлаковой ванне теплота перегревает ее выше температуры плавления металла. В результате металл электрода и кромки основного металла оплавляются. Жидкий металл, имеющий более высокую плотность, чем шлак, стекает вниз и образует жидкую металлическую сварочную ванну. Шлаковая и металлическая

Рис. 6.1. Схема электрошлаковой сварки:

Им и /?в — глубина металлической и шлаковой ванн; В — ширина шва;

  • 1 — электрод; 2 — основной металл; 3 — медные водоохлаждаемые формирующие устройства; 4 сварной шов; 5— металл; 6 сварочная ванна;
  • 7— шлаковая ванна

ванны удерживаются от вытекания специальными медными водоохлаждаемыми формирующими устройствами. Кристаллизующийся в нижней части металлической ванны металл образует сварной шов, поверхность которого покрыта тонкой шлаковой коркой, являющейся разделительным слоем между металлической ванной и поверхностью охлаждающего устройства. За счет этого отсутствует непосредственный контакт жидкого металла с поверхностью формирующего устройства и металл шва не насыщается медью. Шлаковая ванна защищает расплавленный металл от непосредственного взаимодействия с воздухом, обеспечивая окислительно-восстановительные реакции и рафинирование металла шва от неметаллических и газовых включений. Расход флюса при этом обычно не превышает 5 % массы наплавленного металла. Ввиду малого количества шлака легирование наплавленного металла осуществляют за счет присадочного материала. Шов образуется непрерывно за счет постоянной подачи электрода со скоростью Кэ, расплавления его и заполнения зазора между деталями жидким металлом, вытесняющим шлаковую ванну вверх со скоростью сварки VCR. На образование шва оказывают влияние многие факторы, наиболее важные из них — тепловложение и термический цикл, определяемые режимом сварки.

Полная тепловая мощность, выделяемая в шлаковой ванне, определяется по формуле

где U — падение напряжения на вылете электрода в шлаковой ванне, В; 1 — сила сварочного тока, А.

До 23 % выделившейся теплоты расходуется на плавление электрода, до 60 % — на плавление основного металла и до 5 % — на плавление флюса. Потери теплоты на излучение, отвод в формирующие устройства и в основной металл составляют до 12 %. Если выделяемая теплота равна отдаваемой, процесс будет протекать устойчиво. При избытке выделяемой теплоты шлаковая ванна перегревается, начинает кипеть, стабильность процесса нарушается. При недостатке теплоты ванна охлаждается, шлак теряет электропроводность, процесс сварки прекращается.

При установившемся тепловом балансе источник теплоты образует в свариваемом изделии квазистационарное (не изменяющееся, движущееся вместе с зоной сварки) температурное поле, параметры которого зависят от мощности источника нагрева, скорости его перемещения и теплофизических свойств основного материала. Это поле создает при ЭШС довольно широкую зону термического влияния, ширина которой растет с увеличением мощности источника тепла, а также с уменьшением скорости сварки. Термический цикл ЭШС характеризуется медленным нагревом и охлаждением основного металла, что приводит к перегреву околошовной зоны и росту зерна, а это в конечном итоге определяет качество сварного соединения в целом. Например, при ЭШС низкоуглеродистой стали толщиной 200 мм свариваемые кромки основного металла прогреваются на глубину до 50 мм до температуры более 800 °С. Время пребывания отдельных участков околошовной зоны при такой температуре при средней скорости охлаждения 0,2. 0,8 °С/с составляет от 1 до 20 мин. Такой характер термических циклов, с одной стороны, снижает опасность появления трещин в околошовной зоне, а с другой стороны, приводит к росту зерна и получению структур с низкой пластичностью. Особенно резко снижается ударная вязкость. Это основной недостаток ЭШС. Поэтому, как правило, после сварки возникает необходимость в высокотемпературной обработке готового изделия, особенно при соединении легированных сталей больших толщин.

При ЭШС нужно стремиться к уменьшению перегрева около- шовной зоны и к уменьшению роста зерна в ней. Этого можно добиться с помощью многослойной ЭШС, позволяющей уменьшить рост зерна в околошовной зоне и измельчить его за счет нагрева и охлаждения при наложении последующих слоев. Другой путь — местная последующая или сопутствующая термообработка сварного соединения дополнительным источником тепла (газокислородным пламенем, высокочастотным индуктором) или искусственное охлаждение шва и околошовной зоны в процессе сварки.

Электрошлаковую сварку можно выполнить тремя способами, имеющими каждый свои особенности и область применения. Один из них — это сварка проволочными электродами диаметром 3. 5 мм, подаваемыми в сварочный зазор специальными мундштуками с медными токосъемными наконечниками (рис. 6.2, а). Одновременно подается в шлаковую ванну до трех электродных проволок, что позволяет применять трехфазные источники питания. Так как выделение теплоты в шлаковой ванне происходит в основном в области электрода, максимальная толщина свариваемого металла при использовании одной электродной проволоки обычно составляет 60 мм, трех — до 200 мм. Если мундштукам в зазоре придают возвратно-поступательное движение со скоростью VK, тогда толщина свариваемых кромок может быть в 2,5 раза больше.

Рис. 6.2. Способы электрошлаковой сварки: а — проволочными электродами; б — пластинчатыми электродами; в — плавящимся мундштуком

Другой способ — это сварка электродами большого сечения, подаваемыми в сварочный зазор (рис. 6.2, б). Электродами могут быть ленты толщиной 1. 1,2 мм или пластины толщиной

10. 12 мм и длиной, равной утроенной длине шва. Одновременно применяться для сварки могут не более трех электродов при использовании трехфазных источников тока. Одним пластинчатым электродом сваривают металл толщиной до 200 мм, а тремя — до 800 мм, при скорости их подачи Уэ 1,2. 3,5 м/ч.

Оба эти способа хорошо применять при сварке деталей относительно небольшой толщины. При толщине свариваемых кромок более 800 мм особенно сильно сказываются их недостатки. Наличие подвижных мундштуков или пластин в сварочном зазоре может приводить к коротким замыканиям их на кромки детали, что нарушает стабильность процесса сварки. Быстрый износ токосъемных трубок мундштуков усложняет и удорожает обслуживание сварочной установки, а также отрицательно влияет на стабильность процесса. Небольшая длина пластинчатых электродов ограничивает длину сварных швов.

Читайте также:  Расчет сечения провода по диаметру жилы

По третьему способу сварку выполняют плавящимся мундштуком при неподвижном положении его в сварочном зазоре (рис. 6.2, в). Нехватку присадочного материала, необходимого для формирования шва, компенсируют за счет подачи электродных проволок диаметром 3 мм через каналы, выполняемые из тонкостенных трубок или в виде плотно навитых спиралей из сварочной проволоки. Одновременно подаваться через один мундштук могут до шести электродных проволок. Таким мундштуком сваривают металл толщиной до 500 мм, двумя мундштуками — до 1000 мм, тремя — до 1500 мм и т. д. Этот способ расширяет возможности ЭШС, устраняя недостатки двух предыдущих. При использовании ЭШС плавящимися мундштуками можно соединять детали любой толщины и сложной формы сечения.

Кромки под ЭШС разделывают, как правило, под прямым углом. При сварке изделий из металлопроката подготовку торцевых поверхностей кромок выполняют термическими способами разделительной резки, а для деталей, изготавливаемых из литья, поковок, а также из легированных сталей, — механической обработкой (токарной, фрезеровкой или строжкой).

Иногда при ЭШС литых деталей кромки последних вообще могут не обрабатываться. Зазор под ЭШС, образуемый между двумя свариваемыми кромками, является одним из важнейших технологических параметров. Различают расчетные и сборочные

Рис. 6.3. Сборка деталей под сварку: а — собранные детали; б — формы сборочных скоб;

  • 1 — свариваемые детали; 2 — входной карман; 3 — выходной карман;
  • 4 — сборочные скобы; ЬвиЬн сборочные зазоры; у — угол раскрытия стыка;

Н — длина стыка деталей

зазоры. Расчетный зазор регламентируется чертежом сварной конструкции, а сборочный зазор устанавливается технологическим процессом и учитывает деформации при сварке.

Для компенсации деформации, связанной с угловым поворотом деталей при сварке, сборочный зазор делают клиновидным, расширяющимся кверху (рис. 6.3). Угол раскрытия зазора определяется нижним и верхним сборочными зазорами в и Ьн) и длиной стыка деталей Н:

В зависимости от марки стали, способа ЭШС, ее режима и условий закрепления принимают у = 1. 2 0 (0,02. 0,03 рад).

Соединение свариваемых деталей между собой при сборке производят скобами, привариваемыми вдоль стыка через 500. 1000 мм. Внизу, в начале стыка, устанавливают так называемый входной карман для разведения шлаковой ванны, а вверху — выходной карман для вывода усадочной рыхлости, образующейся в конце шва. После сварки карманы срезают газовой резкой. При ЭШС однотипных изделий входной и выходной карманы делают медными водоохлаждаемыми.

Основные параметры режима электрошлаковой сварки — сила сварочного тока, напряжение на электродах и скорость сварки. Изменением этих параметров влияют на размеры сварочной ванны и шва. Размеры ванны оцениваются ее шириной е и глубиной h. Выпуклость шва определяется размерами формирующих устройств.

С увеличением силы тока глубина ванны возрастает и имеет зависимость, близкую к линейной. Ток является главным параметром, за счет которого изменяют глубину ванны в требуемых пределах. На ширину ванны изменение тока влияет незначительно.

Изменение напряжения на электроде большое влияние оказывает на ширину металлической ванны. Зависимость имеет прямолинейный характер. На практике ширину ванны и шва изменяют в требуемых пределах регулированием напряжения на электроде (электродах). С увеличением напряжения несколько возрастает также и глубина металлической ванны.

Изменение скорости сварки для сохранения стабильности процесса требует изменения других параметров процесса, особенно силы сварочного тока. При увеличении скорости сварки наблюдается возрастание глубины ванны. Ширина ее изменяется по более сложной зависимости, имеющей максимум.

К дополнительным параметрам режима электрошлаковой сварки относятся величина зазора, скорость подачи электрода, число электродов и площадь их поперечного сечения, глубина шлаковой ванны, состав флюса и др. Их влияние на размеры сварочной ванны и шва проявляются слабее. Для сохранения стабильности процесса изменение скорости подачи электрода требует и соответствующего изменения силы тока. Следовательно, с увеличением скорости подачи электрода растет и глубина металлической ванны.

При недостаточной глубине возрастает вероятность образования дугового разряда либо внутри ванны, либо на ее поверхности. Глубину шлаковой ванны поддерживают в пределах

При электрошлаковой сварке должно соблюдаться равенство мощности, выделяемой в шлаковой ванне, и мощности, необходимой для образования сварочной ванны и шва. Стабильность процесса возрастает при применении источников переменного тока с малым внутренним сопротивлением (жесткой вольтам- перной характеристикой).

Существует множество видов сварки, в которых используются различные источники энергии, многие из которых являются необычными и редко используются. Электрошлаковая сварка относится к одним из таких вариантов. Данная технология основана на том, что нагрев зоны соединения происходит при воздействии тепла шлаковой ванны. Ванна, состоящая из шлака, нагревается при помощи электрического тока. Шлак используется в качестве защитной среды, так как он создает непроницаемую оболочку, сквозь которую внутрь не могут проникнуть водород и кислород, окисляющий зону кристаллизации.

Одной из особенностей процесса является отсутствие электрической дуги для сварки. Здесь просто пускается электрический ток в шлак, который его беспрепятственно проводит. Благодаря этому выделяется достаточное количество теплоты, которое и расплавляет кромки основного металла. Электрод, проводящий ток, погружают в шлаковую ванну. Благодаря тому, что идет полное соприкосновение, электрическая дуга не горит, но поступление тока продолжается. Электричество протекает через расплавленный шлак.

Чаще всего сварочный процесс протекает в вертикальном положении, и шов создается снизу вверх. Между соединяемыми деталями допускается наличие зазора. Чтобы шов нормально формировался по обеим сторонам зазора, монтируются медные ползунки кристаллизирующими свойствами. Данные свойства получаются за счет охлаждения ползунков водой. Когда шов сформирован в конкретном месте нахождения сварочной ванны, медные детали перемещаются по направлению дальнейшего пролегания шва. Данные детали изготавливаются из меди, так как она имеет более высокую температуру плавления, чем основной металл.

Преимущества

Электрошлаковая сварка может использоваться для сварки чугуна, стали, алюминия, титана и других металлов, которые сложно поддаются свариванию. Также эта методика отлично подходит для металлов большой толщины, которые не возьмет другая сварка. Здесь процесс соединения происходит при помощи одного прохода и не нужно рисковать с многослойным накладыванием швом. Это ликвидирует необходимость в удалении шлака каждый раз после прохода.

Фаски на кромках не снимаются. Во время сваривания применяется как один, так и несколько проволочных электродов, причем сечение в них может быть разное. Это способствует достижению высокой производительности процесса и делает его более дешевым. Причем в сравнение с другими методами, при увеличении толщины заготовки данные показатели только растут.

Недостатки

Электрошлаковая сварка обладает определенными недостатками. Технически она может проводиться, только если толщина металла составляет от 1,6 см и выше. Наиболее выгодным процесс сварки становится только при 4 см толщине, что далеко не всегда осуществимо в промышленной сфере. Иногда требуется совершать дополнительную термообработку, чтобы металл шва и возле него принял те свойства, которые нужны для работы, так как они меняются под действием ЭШС.

Разновидности

Существует несколько основных разновидностей данного процесса, которые отличаются по своим особенностям. Если рассматривать различия по типу используемого электрода, то выделяют сварку с проволочным электродом, плавящимся мундштуком и пластинчатым электродом. Но это не единственные параметры, по которым происходит различие. По наличию колебаний, которые совершаются электродом, выделяют:

  • С колебаниями, которые происходят как в ручной дуговой сварке;
  • Без колебаний, подобно некоторым разновидностям полуавтоматической сварке в газовой среде.
Читайте также:  Почему вытягивается цепь на бензопиле

Также процесс может различаться по количеству используемых электродов:

  • Одноэлектродная сварка;
  • Двухэлектродная;
  • Многоэлектродная.

Так же, электрошлаковую сварку разделяют на разновидности, изображенные на схеме ниже:

Технология

Сущность электрошлаковой сварки заключается в искусственном охлаждении поверхности свариваемого металла. Шлак пропорционально преобразовывает электрическую энергию в тепловую на месте своего нахождения. Главное здесь подобрать требуемый уровень напряжения, который бы смог обеспечить требуемую температуру, с учетом сопротивления металла и прочих факторов. Настройки режима являются одним из самых сложных моментов работы. Чем выше температура окружающей среды, а также внутренняя в расплавленном металле, тем выше проводимость шлаков. Исходя из этого, можно вычислить, что при снижении температуры до определенного значения, шлаки перестают быть проводниками или их сопротивление становится настолько высоким, что весь процесс становится невыгодным.

Одним из самых сложных моментов, которые возникают во время практического применения, является возможность возникновения дугового разряда между поверхностью металла и электродом. Электрошлаковая сварка должна проводиться без применения дуги, но если она возникает в глубине шлаковой поверхности, то это может привести к появлению дефектов внутри шва. Дуга отличается неустойчивостью и во время сварки может появляться неоднократно, что сильно ухудшает целостность шва. Чтобы не возникала дуга, следует задавать такие условия, которые в нормальном состоянии сделали бы ее максимально нестабильной, а при идеальных – вовсе не дали ей возникнуть. Она с меньшей вероятностью возникает в глубине шлаковой ванны. Также переменный ток делает дугу менее стабильной. При снижении напряжения холостого хода, в комплексе с другими методами, создаются именно те условия, которые не дадут образоваться электродуге.

Если же будет не устойчивая подача напряжения, то это может привести к тому, что шлаковая ванна будет образовываться неравномерно или вовсе растекаться.»

Иногда процесс расплавления может стать нестабильным и тогда кристаллизация начнется раньше, чем это нужно. После этого нужно будет вновь расплавлять все, а при повторном воздействии может случиться образование дефектов.

Если во время расплавления, кромки металла расплавляются выше, чем находится сварочная ванна, то они быстрее остывают. Все это приводит к наплавлением. Это означает, что кромки оплавились от температуры, но не смешались с другими металлом, что не привело к появлению надежного соединения. Это может случиться при слишком высоком напряжении или когда ванная залегает слишком глубоко и параметры режима оказываются недостаточными для такой толщины. Правильно подобранный режим делает электрошлаковую прослойку, которая делает шов более стабильным и надежным.

Большая часть выделяемого тепла переходит в сварочную ванну. Одним из главных проводников здесь является электрод. Если превысить допустимое напряжение, то кромки будут оплавляться сильнее. В таком случае не возникает опасности не сплавления, но пропалить деталь вполне возможно.

Заключение

Сварка данным методом обладает очень оригинальной технологией, которая достаточно сложна, если разбирать ее подробно. Но при поверхностном изучении можно сделать массу ошибок, которые приведут к появлению бракованных изделий. Сложность проведения работ делает ее востребованной только в самых ответственных областях применения.

Главной особенностью электрошлаковой сварки (ЭШС) является принципиальное различие процесса электрошлаковой сварки в его начале и дальнейшем протекании, когда сварочная цепь электрического тока проходит по электроду, жидкому шлаку и основному металлу, обеспечивая расплавление основного и присадочного металлов, а также постоянно поступающего в ванну специального флюса. Ванна расплавленного шлака за счет меньшей, чем у расплавленного металла плотности, постоянно находясь в верхней части расплава, исключает воздействие окружающего воздуха на жидкий металл и очищает капли электродного металла, проходящие через шлак, от вредных примесей.

Разработано несколько способов электрошлаковой сварки (рис. XII.1). Наибольшее практическое применение имеет электрошлаковая сварка проволочным электродом (одним или несколькими) с колебаниями или без колебаний, пластинчатым электродом большого сечения, плавящимся мундштуком.

XII.1. Схема процесса и разновидности электрошлаковой сварки
а — одним проволочным электродом с неподвижной осью или с колебанием электрода; б — двумя проволочными электродами с их колебанием; в — пластинчатыми электродами; г — плавящимся мундштуком; 1 — свариваемая деталь; 2 — ванна расплавленного шлака; 3 — электрод; 4 — расплавленные электродный и основной металлы; 5 — сварной шов; 6 — пластинчатый электрод; 7 — мундштук; 8 — медные пластины

Электрошлаковая сварка имеет следующие технико-экономические достоинства: высокую устойчивость процесса, мало зависящую от рода тока, и нечувствительность (благодаря тепловой энергии шлаковой ванны) к кратковременным изменениям тока и даже его прерыванию; электрошлаковый процесс устойчив при плотностях тока 0,2—300 А/мм 2 и возможен при использовании проволочных электродов диаметром 1,6 мм и менее и пластинчатых электродов сечением 400 мм 2 и более;

высокую производительность. По скорости плавления присадочного металла электрошлаковая сварка вне конкуренции. Она позволяет допускать нагрузку на электрод до 10 000 А;

высокую экономичность процесса. На плавление равных количеств электродного металла при ЭШС затрачивается на 15—20% меньше электроэнергии, чем при дуговой сварке. Расход флюса меньше, чем при дуговой сварке, в 10—20 раз и составляет около 5% расхода электродной проволоки;

отсутствие необходимости в специальной подготовке кромок свариваемых деталей и малую чувствительность их к качеству обработки;

высокое качество защиты сварочной ванны от воздуха;

недефицитность и сравнительно низкую стоимость сварочных материалов;

возможность получения за один проход сварных соединений теоретически любой толщины.

Недостатками электрошлаковой сварки являются:

  • производство сварки только в вертикальном или в близком к вертикальному положению (отклонение от вертикали не более 30°) свариваемых плоскостей;
  • недопустимость остановки электрошлакового процесса до окончания сварки. В случае вынужденной остановки в сварном шве возникает дефект. В таком случае сварной шов подвергают ремонту или полностью удаляют и вновь заваривают;
  • крупнозернистая структура в металле шва и зоне термического влияния и связанная с этим низкая ударная вязкость металла сварного соединения при отрицательных температурах;
  • необходимость изготовления и установки перед сваркой технологических деталей (планки, «стартовые карманы», формирующие устройства и др.).

Электрошлаковая сварка применяется при сварке прямолинейных, криволинейных и кольцевых швов. Минимальная толщина деталей, образующих стыковое соединение при ЭШС без технологических затруднений, находится в пределах 25—30 мм. Экономически целесообразнее использовать ЭШС при изготовлении толстостенных конструкций, а также при изготовлении конструкций из низко- и среднеуглеродистых, низко-, средне- и высоколегированных сталей, чугуна и цветных металлов (алюминия, титана). Кроме того, ЭШС применяют для наплавки различных сплавов на низкоуглеродистые и низколегированные стали.

Электрошлаковой сваркой могут быть выполнены стыковые, угловые и тавровые соединения с конфигурацией шва: прямолинейной, кольцевой, переменного сечения, переменной кривизны.

Самым распространенным и простым с точки зрения техники сварки является стыковое соединение. Угловые и тавровые соединения встречаются реже, поскольку по технологическим или конструктивным соображениям их заменяют стыковыми соединениями.

Подготовка деталей к сборке и сварке

Пригодность деталей к ЭШС в основном определяется чистотой обработки торцевых поверхностей свариваемых кромок и состоянием боковых поверхностей кромок, по которым будут перемещаться устройства, формирующие шов.

Читайте также:  Пылесос для штробореза своими руками

Для сварки металла толщиной до 200 мм торцевые поверхности кромок подготовляют газорезательными машинами. Величина отдельных гребешков и выхватов не должна превышать 2—3 мм, а максимальное отклонение от прямоугольности реза должна быть не более 4 мм. При толщинах металла свыше 200 мм, а также для кольцевых швов и деталей из легированных сталей в большинстве случаев применяют механическую обработку.

Боковые поверхности деталей, выполненных из проката, обычно зачищают от ржавчины и окалины наждачными кругами. Боковые поверхности литых и кованых деталей подвергают механической обработке на ширину 60—80 мм от торца кромки с чистотой R 80— R 40. В тех случаях, когда применяют для сварки неподвижные формирующие устройства (медные водоохлаждаемые или стальные привариваемые), боковые поверхности литых деталей не обрабатывают.

При сборке стыковых соединений прямолинейных швов смещение кромок (депланация) не должно превышать 2—3 мм. При сварке деталей разной толщины перед сборкой более толстую кромку сострагивают или на тонкую кромку устанавливают по всей длине стыка выравнивающую планку, которую после сварки сострагивают. При сварке деталей разной толщины используют специальные ступенчатые ползуны. Случайные смещения кромок не должны превышать 1—2 мм.

Допуски на смещение кромок для кольцевых швов меньше. Максимальная разность диаметров стыкуемых деталей не должна превышать ±0,5 мм, а наибольшее смещение кромок при сборке должно быть не более 1 мм. При сварке кольцевых швов цилиндрических изделий большого диаметра с малой толщиной стенки, свальцованных из проката без механической обработки кромок, смещение кромок не должно превышать 3 мм.

При сборке под сварку для уменьшения депланации листов обычно используют шайбы-пластины с двумя круглыми отверстиями или другие приспособления. Эти пластины пропускают в зазор между листами, а в отверстия (диаметром ≈40 мм) забивают цилиндрические клинья со скосом.

Перед сваркой сборочные приспособления следует удалять и заменять закрепляющими устройствами, которыми чаще всего служат скобы, привариваемые с тыльной стороны стыка. При большой толщине листов, когда скорость сварки невелика, вместо скоб можно применять пластины, привариваемые односторонними швами с лицевой стороны и удаляемые в процессе сварки, фиксирующие скобы или пластины устанавливают через 500—800 мм. Пластины приваривают так, чтобы шов заканчивался за 60—80 мм от торцевой поверхности кромок.

Для получения точных размеров готового сварного изделия необходимо собирать детали с зазором, учитывающим деформации соединяемых деталей при сварке. Следует различать расчетный, сварочный и сборочный зазоры. Сварочный зазор обычно принимают на 1—12 мм больше расчетного.

В действительности изделие собирают с большим так называемым сборочным зазором. Сборочный зазор в нижней части стыка равен сварочному зазору. В верхней части стыка сборочный зазор следует увеличивать на 2—4 мм на каждый метр длины стыка.

Электрошлаковые швы формируют с помощью водоохлаждаемых ползунов или медных подкладок, а также приваривающимися подкладками или замковыми соединениями.

Для начала электрошлакового процесса и выведения его за пределы сварного соединения используют входной карман и выходные планки.

Возбуждение электрошлакового процесса

Возбуждение элсктрошлакового процесса заключается в расплавлении флюса и нагреве образовавшейся шлаковой ванны до рабочей температуры.

В производстве находят применение следующие способы наведения шлаковой ванны: «твердый старт», когда сварочный флюс вначале плавится теплом электрической дуги во входной планке, а затем шунтируется подсыпаемым и расплавляющимся флюсом, и «жидкий старт», когда в пространство, образуемое свариваемыми деталями и формирующими водоохлаждаемыми устройствами, заливают жидкий флюс, который предварительно расплавляют в отдельной печи.

При «твердом старте», желательно принимать более высокое сварочное напряжение (в процессе горения дуги), чем при стабильном электрошлаковом процессе. Для более легкого возбуждения дуги на дно входной планки засыпают металлический порошок, стружку, термитные смеси или устанавливают металлические вставки.

Сварочные материалы и оборудование

Флюсы для электрошлаковой сварки должны удовлетворять следующим требованиям:

  • быстро и легко устанавливать электрошлаковый процесс в широком диапазоне напряжений и сварочных токов;
  • обеспечивать достаточное проплавление кромок основного металла и удовлетворительное формирование поверхности шва без подрезов и наплывов;
  • расплавленный флюс не должен вытекать в зазоры между кромками и формирующими шов устройствами при существующей точности сборки и отжимать ползуны от свариваемых кромок;
  • образовывать шлак, легко удаляющийся с поверхности шва;
  • способствовать предотвращению пор, неметаллических включений и горячих трещин в металле шва.

Для ЭШС применяют плавленые флюсы. Лучшими технологическими свойствами при сварке углеродистых и низколегированных сталей обычной прочности обладают флюсы АН-8, АН-8М, АН-22. Флюсы ФЦ-7 и АН-348-А мало пригодны для сварки швов большой протяженности. Процесс с применением этих флюсов характеризуется меньшей устойчивостью при повышенных скоростях подачи электродной проволоки. Положительные результаты при сварке углеродистых сталей дает флюс АН-348-В, обладающий большей электропроводимостью и меньшей температурой плавления по сравнению с флюсом АН-348-А. Устойчивый электрошлаковый процесс и качественные швы на таких же сталях обеспечивает флюс АН-47.

Для сварки легированных сталей повышенной прочности типа 25ХНЗМФА, 20Х2М и других применяется флюс АН-9. Легированные и высоколегированные стали сваривают под флюсом АНФ-1, АНФ-7, 48-ОФ-6. Хорошие результаты получаются при сварке коррозионностойких и углеродистых сталей с использованием флюса АН-45.

Для начала электрошлакового процесса применяют флюс АН-25. Он электропроводен в твердом состоянии и имеет высокую электропроводимость в расплавленном состоянии.

Электрошлаковую сварку и наплавку чугуна ведут на флюсах АНФ-14 и АН-75.

Флюс перед употреблением прокаливают в электрической печи согласно требованиям паспорта или технических условий при 300— 700 °С в течение 1—2 ч. Толщина слоя флюса 80—100 мм.

При ЭШС электродным металлом может быть проволока, пластина, труба и лента. Как правило, используют проволоку сплошного сечения диаметром 3 мм, но можно применять проволоку и других диаметров (1—2 или 5—6 мм).

Химический состав электродного металла выбирают в соответствии с основным металлом и требованиями к служебным характеристикам металла шва. Лучшим вариантом ЭШС считается такой, когда металл шва и основной близки по химическому составу и механическим свойствам. Такая однородность сварного соединения обеспечивает наилучшие условия для изготовления сварного изделия и его эксплуатации.

Наиболее просто это достигается применением в качестве электродного металла пластин или стержней по химическому составу, аналогичных основному металлу.

При сварке плавящимся мундштуком, когда мундштуки представляют собой набор трубок из низкоуглеродистой стали, металл шва легируют, используя проволоку соответствующего состава.

Благодаря большой хорошо перемешивающейся ванне расплавленного металла электрошлаковую сварку возможно вести несколькими электродами, которые значительно отличаются один от другого по химическому составу, и получать металл заданного состава.

При ЭШС иногда применяют дополнительно присадочные металлические материалы, подаваемые в шлаковую ванну. Они расплавляются за счет теплоты в шлаке и попадают в металлическую ванну, участвуя в образовании шва. Дополнительное легирование металла шва возможно через покрытие плавящегося мундштука.

Для электрошлаковой сварки используют комплекс оборудования, включающий сварочную аппаратуру и вспомогательное оборудование. Такой комплекс называется сварочной установкой. Установки для ЭШС подразделяют на универсальные и специальные. На монтаже в основном применяют универсальные установки. Для каждого способа ЭШС существуют различные установки, которые укомплектованы сварочным аппаратом и источником сварочного тока.

Ссылка на основную публикацию
Adblock detector