Сварка стали 09г2с электроды

Низколегированные низкоуглеродистые конструкционные стали, как правило, используют для изготовления ответственных сварных конструкций.

По реакции на термический цикл низколегированная низкоуглеродистая сталь мало отличается от обычной низкоуглеродистой. Различия состоят в основном в несколько большей склонности к образованию закалочных структур в металле шва и околошовной зоне при повышенных скоростях охлаждения. До недавнего времени считали, что металл шва низкоуглеродистых низколегированных сталей, например 17Г1С, 14ХГС и др., имеет только феррито-перлитную структуру. Поэтому предполагали, что структурные изменения в шве при разных режимах сварки сводятся в основном к изменению соотношения между ферритной и перлитной составляющими, а также изменению степени дисперсности структуры.

Более углубленные исследования показали, что при повышенных скоростях охлаждения в швах этих сталей кроме феррита и перлита присутствуют также мартенсит, бейнит и остаточный аустенит. Обнаруживаемый в таких швах мартенсит — бесструктурный, а бейнит представляет собой феррито-карбидную смесь высокой дисперсности.

В данной работе рассмотрим автоматическую дуговую сварку под слоем флюса.

Сварка под флюсом представляет собой метод сварки электрической дугой, при котором сама дуга, горящая между бесконечным электродом и деталью, не видна. Дуга и ванна расплава укрыты слоем зернистого флюса. От влияния атмосферы зону сварки защищает образующийся из флюса шлак. Процесс автоматической дуговой сварки под флюсом показан на рисунке 2.

1 – токопровод, 2 – механизм перемещения проволоки, 3 – проволока, 4 – жидкий шлак, 5 – флюс, 6 – шлаковая корка, 7 – сварной шов, 8 – основной металл заготовки, 9 – жидкий металл, 10 – электрическая дуга.

Рисунок 2– Схема автоматической дуговой сварки под флюсом.

В результате укрытия флюсом значительно повышается тепловой КПД, что обусловливает высокую производительность расплавления по сравнению с другими методами сварки. Поэтому сварка под флюсом считается высокопроизводительным методом сварки.

Применение сварки под флюсом является экономичным и эффективным начиная с толщины листа 6 мм. Области применения сварки под флюсом весьма разнообразны, однако в качестве наиболее характерных можно назвать судостроение, мостостроение, возведение металлоконструкций и производство резервуаров. Этот метод применяется как для соединительной сварки, так и для наплавки слоев для защиты от износа и коррозии. Можно сваривать нелегированные, легированные и хромоникелевые стали.

Так как сварка под флюсом является высокопроизводительным методом сварки, она применяется, прежде всего, в механизированных или автоматизированных системах. Благодаря более короткому времени сварки в сочетании с более высокой относительной длительностью включения источников питания можно беспрерывно сваривать длинные швы. В результате сокращается вспомогательное время и, в итоге, снижается стоимость сварки.

Выбор способа сварки

Способы, режимы и техника сварки резервуарных конструкций должны обеспечивать:

· требуемый уровень механических свойств сварных соединений, предусмотренный проектом;

· необходимую однородность и сплошность металла сварных соединений;

· оптимальную скорость охлаждения выполняемых сварных соединений, которая зависит от марки стали, углеродного эквивалента, толщины металла, режима сварки (погонной энергии), конструкции сварного соединения, а также температуры окружающей среды;

· минимальный коэффициент концентрации напряжений;

· минимальную величину сварочных деформаций и перемещений свариваемых элементов;

· коэффициент формы каждого наплавленного шва (прохода) в пределах от 1,3 до 2,0 (при сварке со свободным формированием шва).

При сварке резервуарных конструкций в зимнее время необходимо систематически контролировать температуру металла и, если расчетная скорость осаждения металла шва превышает допускаемое значение для данной марки стали, необходимо организовать предварительный, сопутствующий или послесварочный подогрев свариваемых кромок. Рабочие диапазоны скоростей охлаждения сталей, а также минимальные температуры, не требующие подогрева кромок при сварке, которые зависят от углеродного эквивалента, толщины металла, способа сварки и погонной энергии, также должны указываться в технологических проектах. Как правило, при осуществлении подогрева кромок следует нагревать металл на всю толщину в обе стороны от стыка на ширину 100 мм.

При сварке в зимнее время, независимо от температуры воздуха и марки стали, свариваемые кромки необходимо просушивать от влаги.

При использовании способов сварки с открытой дугой в зоне производства сварочных работ следует систематически контролировать скорость ветра. Допускаемая скорость ветра в зоне сварки должна указываться в проекте резервуара в зависимости от применяемых способов сварки и марок сварочных материалов. При превышении допускаемой скорости ветра сварка должна быть прекращена или должны быть устроены соответствующие защитные укрытия.

Сварка должна производиться при стабильном режиме. Колебания величины сварочного тока и напряжения в сети, к которой подключается сварочное оборудование, не должны превышать ± 5 %.

Последовательность выполнения всех сварных соединений резервуара и схема выполнения каждого сварного шва в отдельности должны соблюдаться в соответствии с указаниями в проекте резервуара исходя из условий обеспечения минимальных сварочных деформаций и перемещений элементов конструкций. При выполнении монтажных стыков стенки первыми, как правило, должны выполняться швы изнутри резервуара.

Читайте также:  Ремкомплект для домкрата гидравлического бутылочного

Не допускается выполнение сварочных работ на резервуаре при дожде, снеге, если кромки элементов, подлежащих сварке, не защищены от попадания влаги в зону сварки.

Все сварные соединения на днище и стенке резервуаров при ручной или механизированной сварке должны выполняться, как правило, не менее чем в два слоя. Каждый слой сварных швов должен проходить визуальный контроль, а обнаруженные дефекты должны устраняться.

Удаление дефектных участков сварных швов производится механическим методом (шлифмашинками или пневмозубилом) или воздушно-дуговой строжкой с последующей зашлифовкой поверхности реза.

Заварку дефектных участков сварных швов следует выполнять способами и материалами, предусмотренными технологией. Исправленные участки сварного шва должны быть подвергнуты повторному контролю физическими методами. Если в исправленном участке вновь будут обнаружены дефекты, ремонт сварного шва должен выполняться при обязательном контроле всех технологических операций руководителем сварочных работ.

Информация о выполненных ремонтных работах сварных соединений должна быть занесена в журнал контроля качества монтажно-сварочных работ.

Выполнение троекратного ремонта сварных соединений в одной и той же зоне должно согласовываться с разработчиком технологического проекта.

Удаление технологических приспособлений, закрепленных сваркой к корпусу резервуара, должно производиться, как правило, механическим способом или кислородной резкой с последующей зачисткой мест их приварки заподлицо с основным металлом и контролем качества поверхности в этих зонах. Вырывы основного металла или подрезы в указанных местах недопустимы.

После сварки швы и прилегающие зоны должны быть очищены от шлака и брызг металла

Последнее изменение этой страницы: 2016-08-10; Нарушение авторского права страницы

17.2. Технология сварки низколегированных сталей

Сварка распространенных строительных сталей 09Г2С, 10Г2С1, 14Г2 и др., имеющих предел текучести не более 390 МПа, не представляет затруднений. Она почти не отличается от сварки низкоуглеродистой стали. Эти стали не закаливаются и не склонны к перегреву, который влечет за собой рост зерна и снижение пластических свойств. Однако с увеличением содержания углерода в зтих сталях их свойства меняются. Так, стали 15ХСНД и 14Г2 с содержанием углерода 0,18 % имеют склонность к образованию закалочных структур и перегреву в зоне термического влияния. Поэтому для сварки этих сталей следует подбирать оптимальный режим, не допуская образования закалочных структур и перегрева. Сварку ведут электродами диаметром 4—5 мм в несколько слоев, а при толщине стали более 15 мм применяют способ сварки «каскадом» или «блоками», при этом не слишком разогревают металл, чтобы не перегреть зону влияния. Для стали 15ХСНД и 10ХСНД применяют электроды Э50А или Э55, которые перед сваркой прокаливают. Для сварки сталей 09Г2С, 10Г2С1, 14Г2 с содержанием С = 18 % применяют электроды Э42Аи Э50А. Сварка стали с пределом текучести более 390 МПа (16Г2АФ) требует особого внимания. Эта сталь вследствие повышенного содержания углерода склонна к образованию кристаллизационных трещин, однако менее подвержена перегреву околошовной зоны, так как легирована V и N. Сварку ее следует выполнять электродами Э60, Э55 или Э50А. Электроды Э60 марки ВСФ-65У пригодны для сварки во всех положениях на постоянном токе обратной полярности. Для сварки этих сталей можно применять электроды УОНИИ-13/55, СК2-50 и ПСК-50. Подготовляемую к сварке сталь надо особо тщательно очищать; свариваемые кромки и прилегающие к ним поверхности металла шириной не менее 20 мм должны быть очищены от ржавчины, окалины, жиров, краски, грязи, влаги и т. п. Кроме того, места приварки сборочных приспособлений следует срезать и тщательно зачищать абразивным инструментом заподлицо с основным металлом. При толщине стали более 25 мм применяют предварительный местный подогрев перед сваркой каскада, блока или секции, а ткаже подогрев места приварки приспособлений до температуры 120—160°С независимо от температуры окружающего воздуха. При температуре воздуха минус 15 °С и ниже применяют предварительный местный подогрев независимо от толщины стали.

При сборке элементов конструкций из стали 16Г2АФ на прихватках согласно типовой технологии длина их не должна быть меньше 100 мм и расстояние между ними не более 400 мм. Прихватки должны выполняться теми же сварщиками, которые будут сваривать эти конструкции. Перед сваркой рабочие-сварщики должны пройти практические испытания по сварке контрольных пластин из стали 16Г2АФ и быть допущенными к сварке этой стали.

Низколегированные теплоустойчивые стали обладают длительной механической прочностью при высокой температуре. Их применяют в машиностроении при изготовлении паровых энергетических установок. При сварке этих сталей могут образовываться трещины в зоне термического влияния, особенно при толщине стали более б—7 мм или повышенном содержании углерода и хрома. Стали 15ХМА и 12Х1МФ толщиной до б мм можно сваривать без подогрева; стали 20ХМА, 20ХМФЛ, 12Х2МФ, 12Х2М1Л и др. с повышенным содержанием С или Сг нуждаются в предварительном и сопутствующем подогреве до температуры 150— 200 °С при любой толщине свариваемых элементов. Необходимо также регулировать режим сварки, добиваясь замедленной скорости охлаждения от 1 до 25°С/с в зависимости от марки стали. Такой усредненный тепловой режим при сварке этих сталей необходим по двум причинам: чтобы избежать появления закалочных структур, что достигается повышением ?ешювложения; чтобы избежать перегрева зоны термического влияния, приводящего к росту зерна и ухудшению механических свойств, что достигается умеренным тепловложением. Для сварки теплоустойчивых низколегированных сталей предусмотрено 9 типов электродов. Например, для сварки стали 15ХМА — электроды марки Э09МХ, для сварки стали 12Х1МФ — электроды марки Э09Х1МФ. Применяют ряд марок электродов с основным покрытием. Конструкции толщиной более б мм, а также имеющие конструктивные концентраторы напряжений, после сварки подвергают высокому отпуску. В настоящее время установлено, что существенной причиной появления трещин в сварном соединении является растворенный в стали водород, который попадает в шов из покрытия электродов, ржавчины, влаги и т. п. и проникает (путем диффузии) в зону влияния. Для борьбы с водородом применяют следующие средства: увеличивают температуру прокалки электродов; применяют основное покрытие с фгором, которое связывает водород в химическое соединение HF; проводят низкотемпературную термообработку, которая заключается в сыдсрживанин сварной конструкции при температуре 150—200°С в течение 8—10 ч для удаления водорода. Четвертым важным техническим мероприятием, обеспечивающим качество конструкции, является высокий отпуск при температуре 650—750 °С, применяемый почти для всех марок сталей. Сварка теплоустойчивых низколегированных сталей неплавящимся электродом в среде аргона дает более надежные результаты, так как обеспечивает лучшую защиту металла от Н2.

Читайте также:  Входные двери кованые в частном доме фото

Низколегированные высокопрочные стали марок 14Х2ГМ, 14Х2ГМРБ и другие сваривают по технологии, близкой по технологии сварки стали 16Г2АФ, с некоторым ужесточением требований к подготовке, сборке и технике сварки. Подлежащие сварке кромки деталей и прилегающий к ним металл на расстоянии не менее 20 мм от границы шва должны быть тщательно очищены от грата, окалины, ржавчины, масла, влаги и других загрязнений. Сделанные в деталях вырезы газовой резкой, надрезы, царапины, зарезы на кромках и углубления от ударной маркировки должны быть зачищены шлифовальным кругом на глубину 0,2—0,3 мм. Подготовка кромок, сборка соединений под сварку должны точно соответствовать размерам, предусмотренным ГОСТ 5264-80* и ГОСТ 14771-76*. Приваривать сборочные приспособления к деталям не рекомендуется. При необходимости их приварки временные швы после сварки деталей должны быть удалены вырубкой или строганием. Случайные повреждения (выхваты) основного металла расчищают, заплавлягот и зашлифовывают абразивным кругом заподлицо с деталью.

В начале и конце стыкового соединения устанавливают и приваривают выводные планки (17.1). Стыки допускается собирать на прихватках, которые должны быть высотой не менее 5—6 мм, длиной 50— 100 мм и располагаться на расстоянии не более 400 мм друг о г друга, но не в местах пересечения швов. Для сварки используют электроды Э70 марки АНП-2 с основным покрытием. Сварку ведут постоянным током обратной полярности. При температуре окружающего воздуха ниже 0°С и толщине стали до 30 мм применяют предварительный подогрев кромок до 100— 120°, а при толщине более 30 мм—до температуры 130—150°C. При положительной температуре и толщине стали 20 мм и более применяют предварительный подогрев до 60—100 °С, а при толщине 40 мм и более— 100—150°С. Стыки следует сваривать без перерывов, не допуская перегрева сварного соединения между отдельными проходами выше 200—230°С, во избежание роста зерна в околошовной зоне. Для контроля температуры применяют термопары, термоэлектрические пирометры или термоиндикаторные карандаши. Рекомендуется непосредственно после сварки продолжать подогрев до указанных выше температур, а затем закрывать шов асбестовой тканью для замедления остывания.

Короткие швы до 300 мм сваривают напроход, средние — до 1000 мм — от середины к концам, длинные—обратно-ступенчатым способом. При толщине металла более 20 мм применяют каскадный или блочный способ, при этом не следует забывать о недопустимости перегрева в соответствии с указанными пределами температур.

2. Технологический раздел.

2.1 Исходные данные.

Конструкция представляет собой шлюзовой затвор, состоящий из рамы из стали 09Г2С облицованной биметаллическим листом из сталей 09Г2С+12Х18Н10Т. Затвор предназначен для использования на шлюзах в тяжелых условиях силового и коррозионного воздействия воды.

2.2 Базовая технология и её критический анализ.

Затвор собирается из отдельных базовых частей, соединяемых между собой при помощи сварки. Металлоконструкция рамы затвора состоит из совокупности деталей, таких как: ригель, стрингер, пояс, ребро, диафрагма, обшивка, угольник. Детали подаются на место сборки мостовым краном. Сборка конструкции происходит вручную на сборочной плите с Т-образными пазами с применением струбцин, винтовых прижимов, клиньев и упоров. Все прихватки и сварочные швы для стали Св-09Г2С выполняются проволокой Св-08Г2С Ø1,2 в углекислом газе при помощи выпрямителя сварочного и полуавтомата А-547У. Сварка плакирующего слоя биметалла 09Г2С+12Х18Н10Т производится проволокой Св-07Х19Н10Б в углекислом газе.

Из анализа приведенной технологии можно сделать вывод, что широкое применение автоматизированной сварки в среде защитных газов экономически и технологически нецелесообразно ввиду невысокого объема годовой программы изготовления, сложной конфигурации сварных швов и не доступности некоторых участков собранных соединений под сварку. Однако в конструкции также имеются продолжительные сварные швы, выполняемые полуавтоматической сваркой, для которых полная автоматизация процесса сварки позволила бы повысить качество сварного шва и общую технологичность.

Применение в базовой технологии сварки в углекислом газе существенно отличается от процесса сварки в газовых смесях. При сварке в СО2 температура дуги в среднем на 600 К выше, чем в Ar, также выше и у капель.

Поэтому скорость протекания физико-химических процессов при сварке в СО2 выше, чем в смесях. Необходимо учитывать, что при разложении СО2 выделяется большое количество кислорода при этом защитная среда обладает высокой окислительной способностью. С увеличением окислительной способности защитного газа увеличиваются потери легирующих элементов из электродной проволоки, особенно обладающего большим химическим сродством к свариваемому металлу. Сварка в СО2 высоколегированных коррозионностойких сталей, типа 12Х18Н10Т недопустима.

При оценке окислительного потенциала газа по суммарному кислороду, прореагировавшему с потерянными в процессе сварки легирующими элементами, следует, что углекислый газ более чем на треть превосходит по окислительной способности наиболее часто применяемую смесь 80 % Ar и 20 % СО2.

При использовании электродной проволоки Св-08Г2С для сварки в СО2 раскислители (0,70-0,95 % кремния и 1,80-2,10 % марганца) находятся в избыточном количестве. Это приводит к ухудшению технологических характеристик процесса и неоптимальному сочетанию прочностных и пластических свойств сварного соединения.

Однако применение смесей на основе аргона для сварки крупногабаритных конструкций из низколегированных сталей экономически нецелесообразно.

Повысить качество формирования швов в углекислотной среде при сварке низколегированной стали, возможно за счет обеспечения струйного переноса электродных капель и более качественной защиты реакционной зоны сварки от воздушной атмосферы. Это возможно реализовать за счет использования порошковых проволок малого (до 1,6 мм) диаметра для сварки в СО2 и применения импульсно-дуговых источников сварочного тока.

Таким образом, в технологическом процессе сварки затвора предложены следующие усовершенствования:

Применить новые сварочные материалы в виде порошковых проволок малого диаметра (до 1,6 мм) для сварки с среде СО2, с целью повышения качества защиты реакционной зоны сварки.

Применить импульсно-дуговой источник сварочного тока, с целью качественного управления переносом электродного металла.

Применить автоматизированную сварочную каретку для сварки протяженных швов, с целью повышения качества сварного шва и общей технологичности.

2.3 Анализ технологичности рамы затвора шлюзовых ворот.

При создании изделия стремятся не только достигнуть высокого технического уровня, но и максимально возможно снизить затраты труда, материалов и энергии на его проектирование, производство, эксплуатацию и утилизацию.

Изделие можно считать технологичным, если оно не только соответствует современному уровню техники, экономично и удобно в эксплуатации, но в нем учтены и возможности применения наиболее экономичных, производительных процессов изготовления, ремонта и утилизации.

В результате использования более производительного способа сварки снижаются временные затраты на изготовление конструкции, что свидетельствует об увеличении производственного потока.

Использование порошковых проволок также повышает технологичность процесса. В процессе сварки данная проволока способствует струйному переносу электродного металла и качественной защите сварочной ванны.

Применение пневмоприжимов позволяет облегчить сборку и сварку изделия, а также повысить ее точность.

Не смотря на первичные затраты на закупку нового оборудования за счет увеличения производительности можно достичь большей прибыли от производства за более короткие сроки.

2.4 Оценка свариваемости материалов.

Сталь 09Г2С относится к низколегированным сталям, общее количество легирующих добавок в которых не превышает 2,5%. Заменить сталь 09Г2С можно следующими марками: 09Г2, 09Г2ДТ, 09Г2Т,10Г2С, а также 19Мn-6. Химический состав и механические свойства стали 09Г2С приведены в таблице 1 и 2.

Таблица 1 – Химический состав стали 09Г2С, масс. в % (ГОСТ 19281 – 89)

“>

Ссылка на основную публикацию
Adblock detector